F'(x) = (x-3) / (x^2+7)
F''(x) = (1*(x^2+7) - (x-3)(2x)) / (x^2+7)^2
F''(x) = (-x^2+6x+7) / (x^2+7)^2
F''(x) = -(x+1)(x-7) / (x^2+7)^2
a)
F has minimum value where F'(x) = 0 and F''(x) > 0
F'(x) = 0
(x-3) / (x^2+7) = 0
x = 3
F''(3) = -(3+1)(3-7) / (3^2+7)^2 = 16/16^2 = 1/16 > 0
Minimum value at x = 3
b)
F is increasing when F'(x) > 0
(x-3) / (x^2+7) > 0
x - 3 > 0 . . . . . . since (x^2+7) > 0 for all x
x > 3
F is decreasing when F'(x) < 0
x < 3
Increasing on interval (3, 8)
Decreasing on interval (-8, 3)
c)
F is concave up when F''(x) > 0
-(x+1)(x-7) / (x^2+7)^2 > 0
-(x+1)(x-7) > 0 . . . . . . since (x^2+7) > 0 for all x
-1 < x < 7
F is concave down when F''(x) < 0
x < -1 or x > 7
Concave up on interval (-1, 7)
Concave down on intervals (-8, -1) U (7, 8)
No comments:
Post a Comment